
Machine Learning
Introduction
The input to a learning algorithm is training data, representing experience, and the output is some expertise,
which usually takes the form of another computer program that can perform some task. Memorization
of training data is quite different from learning because memorization can’t label unseen data and can’t
generalize, also known as inductive reasoning or inductive inference.

In training, the learner is requested to output a prediction rule, also known as a predictor, a hypothesis, or a
classifier. The learning paradigm–coming up with a predictor h that minimizes LS(h)–is called the Empirical
Risk Minimization* or ERM for short. This is also known as empirical error and emperical risk.

Mistake-Bounded Model of Learning
MB Learning guarantees an ironclad contract that defines how many errors will occur over a set of samples.
The model makes a prediction, and if correct, moves on; otherwise, if it predicts wrong, it learns. It is said
a learner has mistake-bound t if for every sequence of challenges, the learner makes at most
t mistakes. A monotone dijunction is is essentially an ORing of the variables and monotonic because
there aren’t any negations. For monotone disjunctions, you’ll have at most n mistakes but for monotone
disjunctions, you can have up to 2n disjunctions because you negate each variable and append it as the initial
string. Each expansion is yi = xi. The process of doubling the string initially is called feature expansion.

Initial monotone disjuction: x1 or x2 or xn. Without monotone but generic disjunctions, we double input
size and therefore the MB will be 2n since we can have 2n possible mistakes.

On-Line Algorithms

The areas of On-Line Algorithms and Machine Learning are both concerned with problems of making decisions
about the present based on knowledge of the past.

Decision Trees
The size of the decision tree is the number of nodes in the tree. The depth of the tree is the length of the
longest path from root to leaf. The ϕ(x) function is the error rate.

Decision Trees are a powerful way of classifying data that possess a lot of useful theoretical properties. A
decision tree is a boolean function, and in this segment, we’re only considering boolean trees and ignorning
decision trees with more than two outputs.

Tree Input: x ∈ {0, 1}n with the tree encoding a function f(x) → {0, 1}.

We navigate the tree by considering, for example, x4 and traversing it down the tree depending on the binary
value. If we reach a leaf node, we output the resulting boolean value. The size of the decision tree will be the
number of nodes, and height of the tree will be the length of the longest path from the root to a leaf.

Building a Tree

Given a set of labeled examples, build a tree with low error. Suppose we have a training set S =
{(x1, y1), ..., (xm, ym)} where m is the number of traning samples and yi ∈ {0, 1} and xi ∈ {0, 1}n. The
error rate, also known as training error or empirical error rate, is equal to # of mistakes T makes on S

|S| ,
where T is the decision tree.

In the case of a single-leaf tree, it’s prudent to pick the mode of S as the output. If we had a potential
function ϕ(a) = min(a, 1 − a), then with 5 positive and 10 negative examples, the error rate would be

ϕ(Pr(x,y)∼S(y = 0)) = ϕ(1
3) = min(1

3 ,
2
3) = 1

3
. We would have the same error rate if we picked 10 positive and 5 negative examples.

Now, expand a trivial tree to a deeper tree. Whenever you pick a tree branch, say x1 = 0, you exclude all
x1 = 1 points on that branch. After this decision is made, you condition on those x’s from the training set.
The gain function, the decrease in training error, of a chosen value, say x1, is

GAIN(x1) = OLD RATE − NEW ERROR RATE USINGX1

. The new error rate is

Pr(x,y)∼S [x1 = 0] · ϕ(Pr(x,y)∼S(y = 0|x1 = 0)) + Pr(x,y)∼S [x1 = 1] · ϕ(Pr(x,y)∼S(y = 0|x1 = 1))

. We then pick the literal x∗ that maximizes the gain function and repeat the process.

Pick the smallest computed ϕ value. This means that the the gain is maximized.

Structure of Tree

The structure of the tree is determined by the choice of ϕ, which corresponded to the training error earlier.
Given ϕ(a) = 2 · a · (1 − a) (Gini Function/Index), it’s a dome that’s an upper bound for ϕ(a) = min(a, 1 − a).
The difference is the smoother function gives us more useful theoretical properties.

1

Random Forest Termination Criterion

• easy option: stop when the gain is extremely small for all literals
• better optimized: build an enormous tree and prune trees from the bottom up that have the least

overall effect on the decision tree, retain up to n nodes. This is called the random forest.
• random trees: build many small decision trees

1. randomly subsample from training set S to S′

2. randomly pick some features from x1, ..., xk of size k
3. build a decision tree using S′ and the k random forests

Generalization

A common question what is the true error or generalization error of a classifier? As an example, a
decision tree: for T , D, the probability

Pr(x,y)∼D[T (x) ̸= y]

where x is the challenge and y is the label. Given a training sample S, you can build a decision tree whose
size is size ≥ |S| that is consistent with all the points in S–this would be bad because you’re memorizing your
data. You not only have to worry about a low training error but are you getting a true low generalization
errror/good predictive power?

One common way to measure the “true error of a classifier” is to use a hold-out or validation set. The problem
is that this validation set should only be used once since it’s easy to indirectly incoperate the hold-out into
the training, which is called overfitting. We’ll need a better technique such as cross-validation.

Generalization

Another approach is to trade-off training error with “model complexity”. Define another potential function:

ϕ(T) = training error on S + α · size(T)
|S|

, where α is a hyperparameter. We’d like to minimize ϕ. T is the tree hypothesis.

Another common approach is the Minimum Description Length Principle(MDL), which involves
encoding the number of bits involved. You can imagine the upper-bound m · (n + 1), where m is the number
of samples in the training set and n for the sample and 1 for the label. You could then encode S and the
number of bits in bits(T) for the generated tree plus the number of bits to encoded the 10% we got wrong,
assuming our tree T is 90% correct on S. You can think of the T as compressing the data and the wrong
examples can then be memorized with encoding.

Probably Approximately Correct(PAC) Learning

PAC works for classification. Suppose there is a distribution D on {0, 1}n. Define function class C =
{decision trees of size s} where a learner runs in polynomial(not exponential) time. Fix c ∈ C, where c is the
unknown decision tree we want to learn. The learner draws a sample (x, y) according to prob. dist. of D and
y is equal to c(x). PAC model has to run in polynomial time in all of the relevant parameters. We cannot
draw |S| from exponentially many training points.

Bad Goal: we output c ∈ C that is consistent with S but the true error of c is > ϵ.

Goal: For any choice of δ, ϵ, A should otput with probability ≥ 1 − δ an ϵ-accurate classifer. A is allowed to
run in time polynomial polynomial(1

ϵ , 1
δ) and take many more samples in time of polynomial(1

ϵ , 1
δ) .

PAC Sampling

When sampling our training set, we denote the probability of getting a non-representative sample by δ, and
call (1 − δ) the confidence parameter of our prediction. δ can be seen as the probability of getting a
non-representative sample. Since we can’t guarantee perfect label prediction, we introduce the accuracy
parameter, ϵ, to describe the quality of the prediction. This accuracy parameter determines how far the
output classifier can be from the optimal one, and a confidence parameter indicating how likely the classifier
is to meet that accuracy requirement.

Anything that exceeds ϵ is considered a failure of the learner. The goal is for the learner to output an
h(decision tree) that’s in C such that

Prx∼D[h(x) ̸= c(x)] ≤ ϵ.

With probability at least 1−δ, the learner should output a hypothesis h s.t. Prx∼D[h(x) ̸= c(x)] ≤ ϵ.

The run-time is polynomial(1
ϵ , 1

δ , n, s).

Here’s a simple example for the existence of δ. Suppose you’re given one of two jars: a) jar with 100 blue
marbles, and b) jar with 90 red and 100 blue marbles. The probability of failure for one hundred draws, or δ,
is (0.1)100.

Similarly, fix c1 and assume it has a true error rate greater than ϵ. What is the probability draws from the
distribution that c1(or any c ∈ C) is consistent with S? It’s (1 − ϵ)|S|, where S is the the training set. In
general, for every ci with error greater than ϵ, the probability is at most (1 − ϵ)|S|.

2

Another question is what is the probability there exists a function c ∈ C whose true error is greater than ϵ
and is consistent with S? |C| · (1 − ϵ)|S| ≤ δ. Continuing further, using the union bound, you’ll get

|S| ≥
log (|C|

δ)
ϵ

.

What this is saying is that if you the number of training points larger than the quantity above, then with
probability ≥ 1 − δ the function output c is 1 − ϵ accurate. We used 1 − x ≈ e−x, 1 + x ≈ ex to prove this.

The reason why we compute the bad event is because if we have an error greater than ϵ, it’s
this computed probability; otherwise, if the algorithm doesn’t fail because bad doesn’t occur,
then our learner can’t find a function that’s consistent AND has a large error. If the bad event
doesn’t happen, then A can’t find a function that’s consistent and has a large error because
they don’t exist.

Realizability Assumption There exists h⋆ ∈ H s.t. L(D,f)(h⋆) = 0. Note that this assumption implies
with probability 1 over random samples, S, where instances of S are sampled according to D and are labeled
by f , we have LS(h⋆) = 0.

Corollary 2.3 Let H be a finite hypothesis class. Let δ ∈ (0, 1) and ϵ > 0 and let m be an integer that
satifies

m ≥ log (|H|/δ)
ϵ

.

Then, for any labeling function, f , and for any distribution, D, for which the realizability assumption
holds(that is, for some h ∈ H, L(D,f)(h) = 0), with probability of at least 1 − δ over the the choice of an i.i.d
sample S of size m, we have that for every ERM hypothesis, hS , it holds that

L(D,f)(hs) ≤ ϵ.

Efficiency

The learner should should be efficient: (n, s) where s is the size of decision tree and n in time polynomial in
n and s. This also means that number of samples or draws from the distribution the learner can request
should be bounded by a polynomial in n and s. With a probability of at least 1 − δ (PROBABLY),
the learner should output an h s.t. Prx∼D[h(x) ̸= c(x)] ≤ ϵ. The run-time should be polynomial of
1
ϵ , 1

δ , n(where{0, 1}n), s(sizeofdecisiontree)(TODO WHY).

Sample Complexity

The sample complexity of learning H discusses how many examples are required to guarantee a PAC solution.
It also depends on the log size of H.

TODO write down defintion 3.1 pac learnability

Corollary 3.2

Every finite hypothesis class is PAC leranable with sample complexity

mh(ϵ, δ) ≤ ceiling(log(|H|/δ)
ϵ

).

When can we learn a function class, and which function classes?

Given an algorithm A which converts training sets to decision trees, A(S) outputs a tree T consistent with S,
where S is a training set. The size(T) is going to be at most s. The A always outputs a consistent hypothesis
from c given any traning set, assuming one exists.

Given A, how can we learn c ∈ C? Simply draw sufficiently many training points.

Errors Revisited

We redefine the true error(or risk) of a prediction rule h to be

LD(h) def= P(x,y)∼D[h(x) ̸= y] def= D({(x, y) : h(x) ̸= y}).

The empirical risk(or training error) remains unchanged:

LS(h) def= |{i ∈ [m] : h(xi ̸= yi}|
m

.

PAC-Learning Axis-Parallel Rectangles

We’re now dealing with infinite function classes with two dimensions. We can’t exactly rely on what learned
in the previous PAC section because there are infinitely many axes-parallel rectangles. The goal is given ϵ
and δ, output h that is ϵ-accurate with probability ≥ 1 − δ.

3

The tighest fitting rectangle should have m samples as follows:

m ≥ 4 · log(4/δ)
ϵ

,

then the tightest fitting rectangle will be an epsilon-accurate hypothesis with probablity at least 1 − δ.

The intuitive explanation is that we construct a rectangle that has too much probablility mass outside of it.
Meaning, the sample we drew didn’t contain points outside of it. This can happen each if the strips with
probablity ϵ/4 strips has no points, so our training set failed to capture these points. Define b1 for each of
the strips which says points occurred in training sample but exist in distribution. Then the define Pr(B1)
(out of 4) to be

Pr(B1) ≤ (1 − ϵ/4)m.

The probablity of failure is you draw outside of this error region for all m samples, is then 4 times the
quantity above.

The bad event is the tightest-fitting rectangle is too small, i.e. significant prob. mass exists
outside of bounds of h. Pick a shaded region, say B1, and B1 is the probability we see no points
in that strip on distribution D. If NEITHER of them occur, then it is ϵ-accurate hypothesis
because of the probability union. First compute for one strip.

Pr[B1 ∪ B2 ∪ B3 ∪ B4] ≤ 4 · (1 − ϵ

4)m ≤ δ

m ≥
4 log(4

δ)
ϵ

Half Spaces

Let’s consider a class C of half-spaces for PAC learning. A half-space is

SIGN(w · x − θ),

where x ∈ Rn, w ∈ Rn, θ ∈ R is an unknown scalar, f is boolean that outputs 0 or 1.

The function we’re trying to learn is

f = SIGN(Σn
i=1wixi − θ).

Given draws of (x, f(x)) from D where x is distributed according to D. Suppose we get 0101 whose label is
positive, then we know that w2 + w4 > θ, and conversely, given a negative example with input 0110, then
w2 + w3 ≤ θ. Each labeled example yields a linear inequality leading a system of linear inequalities. There’s
an infinite number of half-spaces here, since C can be infinite. If we assume that each wi is an integer in
some bounded range to have a bounded function class, then we can apply our consistency analysis.

We are looking for an algorithm with an uknown θ ∈ R s.t.

hθ(x) =
{

−1 if x ≤ θ

1 otherwise

Cross-Validation
CV is the hold-out approach for testing/approximating the true error of a classifier. You “leave out” some
part of the training set and whatever fraction of mistakes your classifier makes here is the true error. We use
the full training set and divide it into k folds. We then average the errors of all the k-folds.

Hold-out data is

1. labeled data is expensive to obtain
2. if we want to try out multiple methods for generating classifiers, we quickly lose confidnece in our

estimates

Chernoff Bound
Suppose you have X1, X2, .., Xn r.v.s where Xi ∈ {0, 1}, and suppose E[Xi] = p. It’s saying when you take
the sum of a bunch of r.v.s, the sum deviates from µ is exponentially small in the quantity little n. This
bound still holds even when the probabilities differ, we just chose the same p here. We can apply
the Chernoff bound to the case of estimating the true error of a classifier. Then,

n = |S|

S = Σn
i Xi

µ = E[S] = n · p

We want to apply the Chernoff bound to the case of estimating the true error of a classifier with holdout set
S, where n = |S|.We’re interested in Z which is the r.v. that corresponds to the true error of the classifier.

4

We can let Xi be r.v. that equals 1 if h is incorrect on the ith element of S; 0 otherwise. We define p to be
the true error of the classifier h. Pick a delta and decide what n is needed. Z corresponds to the true
error of the classifier.

Z = Prx∼D[h(x) ̸= c(x)].

P r[S > µ + δn] ≤ e−2nδ2

Pr[S < µ − δn] ≤ e−2nδ2

Pr[|S − µ| > δn] ≤ 2 · e−2nδ2
< α

I added α as the bound of how incorrect you want to be(starting with (...) < α, solve for n). Note: if
|S − n · p| ≤ δn(the good event), the error rate on S(holdout) is within δ of the true error rate.

Note: the δ here is not the δ from PAC learning, it’s defined by the α. The δ is how close you want to be
between the training error versuses the true error of our classifier(e.g., 0.1). I want the emperical error
rate to be within δ of the true error on our classifier, and I want to be α confident. We want to
claim p is the true error of h. Plug in the value for δ as the true error. Ignore the Pr[] side and
solve only for the α and 2(...) part, solve for n. It’s saying the probability that your error rate on
holdout set S doesn’t deviate δ from the true error rate.

Markov’s Inequality
Let X be a r.v. that only takes on non-negative values for some factor K. This is useful for upper bounds.
This bound depends on the expected value of the r.v. and that X is non-negative.

Pr[X ≥ K · E[X]] ≤ 1
K

Pr[X ≥ K] ≤ E[X]
K

Chebyshev’s Inequality
This tells us when something deviates by more than t standard deviations, where σ is the std. deviation and
µ is the expectation of X. This bound assumes X has non-zero, finite variance.

Pr[|X − µ| > t · σ] ≤ 1
t2

Perceptron Learning
The class of half-spaces, designed for classification problems, namely Rd and Y = −1, +1.

HSd = signđLd = {x → sign(hw,b(x)) : hw,b ∈ Ld}.

In the context of halfspaces, realizability is important because it means we can cleanly separate with a
hyperplane all the positive examples from the negative examples.

Complicated LP Solver

A complicated algorithm using LP is to write m inequalities and then solve using LP solvers. The good news
is they run in polynomial time.

Perceptron Algorithm

1. Choose an initial vector such as w0 = (0, ..., 0) or w0 = (1√
n

,)
2. A teacher provides an x ∈ Rn, and only if a mistake is made does the learner update its state.
3. Assume a mistake was made. In case 1 where x was truly a negative example, then wnew = wold −x;

otherwise, wnew = wold + x for the truly positive example. An equivalent way to view the update
rule is for every time you mistake to

wnew = wold + y · x

input: A training set (xxx1, y1), ..., (xxxm, ym)
initialize : www(1) = (0, ..., 0)

for t = 1, 2, ...

if (∃i s.t. yi⟨www(t),xxxi⟩ ≤ 0) then
www(t+1) = www(t) + yixxxi

else
output www(t)

5

Assumptions

• 1st: Assume ∃w⋆, true unknown weight vector that labels all the points, assume norm ||w⋆|| = 1. The
point means no loss of generality. If I increase the magnitude of w, it wont impact the sign.

• 2nd: Assume every x is ||x|| = 1. This is made using the assumption of ||x|| = 1 but if we didn’t make
this assumption, then ||x|| = r, the mistake bound would then be O(r2

ρ2).
• 3rd: θ = 0. However, if we can add a constant 1 to x to have a bias term that will always be pulled

from the weight vector.
• Main Assumption: there exists a margin ρ, all points are at least distance ρ from w⋆. All the

challenges will be at least distance ρ. If you’re a positive/negative example, you’re going to be at least
this distance from true halfspace. w⋆ is perpendicular to the half-space line.

Because all of our points have a distance of ≥ ρ from the true halfspace and are unit vectors, then |⟨x, w⋆⟩| ≥ ρ.
This is called the margin assumption.

Peceptron Convergence Theorem

The mistake-bound of perceptron algorithm is ≤ O(1
ρ2). If all of the examples obey this margin assumption,

then the learner will make at most the mistakes above.

Proof of MB on Perceptron

• Claim 1: on every mistake w · w⋆ increases by at least ρ.

wnew = wold + y · x

wnew · w⋆ = (wold + y · x) · w⋆ = wold · w⋆ + y · x · w⋆

However, we know that |⟨x, w⋆⟩| ≥ ρ, therefore the added quantity is always at least ρ and positive
because we multiply by y.

• Claim 2: ||w||2 increases after every mistake by at most 1

||x|| is at least magnitude 1

wnew = ||wold + y · x||2 = ||wold||2 + 2 · y⟨x, wold⟩(negative) + ||x||2(at most 1)

Perceptron: Error Bound Proof

For t mistakes, we know that tρ is the minimum. Furthermore, if we had to account for the theta or a bias,
we can add a new feature and call it xn+1. Also, if ||x|| ≠ 1 but r, then the M.B. will be O(R2

ρ2). We also
know that ||w|| ≤

√
t.

t · ρ ≤ w · w⋆ ≤ ||w|| · ||w⋆||

t · ρ ≤ ||w|| ≤
√

t

t · ρ ≤
√

t

t ≤ 1
ρ2

Polynomial Threshold Functions

PTF where p(x) is a multivariate polynomial of degree d.

f = sign(p(x))

We can use a feature map for exactly n2 new variables for a degree two polynomial. A degree of two
polynomial in n dimensions as being converted to a halfspace in n2 dimensions. Learning PTFs of degree d is
equivalent to learning halfspaces in nd dimensions.

(x1, ..., xn) → (x2
1, x1 · x2, ..., x2

n)

(y1, ..., yN=n2)

f = sign
(
ΣN

i wiyi

)
Polynomial Threshold Functions Run-time

Running in nd dimensions, just computing the feature map takes time nd, where n is the length of the input.
The margin would be expensive in this nd dimension. We need a better approach(next section: kernel trick).

6

Kernel Perceptron

The function |⟨x, w⋆⟩| ≥ ρ. You can run the perceptron implicitly in this higher dimensional space via a
kernel function.

K(x1, x2) = ⟨ϕ(x1), ϕ(x2)⟩

Assume wold = 0 on the first iteration because we initialize to 0 by default(w = 0nd).

wnew = wold + y · ϕ(x)

After the first mistake, we need to evaluate x2, so

wnew · ϕ(x2) = ⟨y · ϕ(x1), ϕ(x2)⟩ = y · K(x1, x2)

wt+1 = Σt
i=1yi · ϕ(xi) ∈ Rnd

Simple Kernel Function

Take an example of a deg-2 PTF.

ϕ(x1, ..., xn) = (x1 · x1, x1 · x2, ..., xn · xn)

Let’s define K(x, z) = ⟨ϕ(x), ϕ(z)⟩. Expanding out the definition of the inner product

K(x, z) = (x2
1z2

1 + x1 · x2 · z1 · z2 +) = (Σn
i=1xi · zi) · (Σn

j=1xj · zj) = (x · z)2 = K(x, z)

The k’s now vary from 1, ..., n instead of 1, ..., nd.

Other Kernel Functions

K(x, z) = (x · z + c)2

ϕ(x) = (x2
1, ..., x2

n,
√

2c · x1, ..,
√

2c · xn, c)

Gaussian Kernels ≈ K(x, z) ≈ e−||x−z||2 (Radial Basis Kernel)

Linear Regression

Linear Regression is fitting a line to data. One fundamental difference is our labels will be real-valued, i.e.,
(x, y) where y ∈ R. X and Y are random variables, and suppose we want to predict the label/value, and as
usual, we get to see X.

Suppose we wanted to predict Y but we don’t know X, where (x, y) ∼ D, then the optimal guess is to use
E[Y].

Our loss function will be the square-loss: (prediction − Y)2.

We can also observe X and we want to predict Y. The optimal prediction will be E[Y |X] = f(x), where f(x)
is the regression function. The obstacle is that f(x) could be unknown or difficult to compute.

LR says: given X, what linear function of X should we use to predict Y? We want to learn coefficients β0 and
β1 to minimize

E(x,y)∼D[(y − (β0 + β1x))2]

Simple Linear Regression

Where x and y are scalars with m samples,

(x1, y1), ..., (xm, ym)

minβ0,β1

1
m

Σm
j=1(yj − (β0 + β1xj))2

We can take derivative w.r.t B0, B1 and set them equal to 0.

∂l

∂β0
= 1

m
Σm

j=1(−2)(yj − β0 − β1xj) = 0

∂l

∂β1
= 1

m
Σm

j=1(−2xj)(yj − β0 − β1xj) = 0

We eliminate some coefficients(e.g., −2) because they aren’t important.

We can use y, x(averages), and β1.
β0 = y − β1x

7

β1 will not involve β0.
0 = xy − β0x − β1x2

0 = xy − (y − β1x)x + β1x2

β1 = xy − x · y

x2 − (x)2

The denominator is the variance of x, not exact but close and the numerator is the covariance.

Linear Regression with Multiple Variables

x ∈ Rn, y ∈ R , where we’re fitting a line to n-dimensional data with m rows and n columns by representing
and m × n matrix, with y ∈ Rm labels.

Goal: find a vector w ∈ Rn s.t. minw||X · w − y||22
We should take the orthogonal projection of y onto Xw. Another way of writing it is XT · (y − Xw) = 0.

XT y − XT Xw = 0

XT y = XT Xw

(XT X)−1XT y = w

Linear Regression: Maximum Likelihood

Assume simple linear regression case. Assume y = β0 + β1x + ϵ, where ϵ N(0, σ2) – this is a random gaussian
noise variable. The likelihood function is the probability of seeing a training set given choices of β0, β1 of our
parameters.

Πm
i=1P (yi|xi, β0, β1)

PDF of a Gaussian is 1√
wπσ2 · e

−(yi−(β0+β1xi))2

2σ2 . Choose β0 and β1 to maximize this likelihood.

We can compute using the log likelihood of

Σm
i=1log(p(yi|xi, β0, β1))

Vector Linear Regression: Convexity

A function is convex if the chord connecting any two points of the graph lies above the function.

A mathematical way of describing convexity is

f(1
2x1 + 1

2x2) ≤ 1
2f(x1) + 1

2f(x2)

This is the definition of convexity where x⋆ is the global minimum and substitute it for x2 below. We’ll
always find the global minimum if the function is convex.

f(a · x1 + (1 − a) · x2) ≤ a · f(x1) + (1 − a) · f(x2)

Gradient Descent

Even for more complicated functions, assume they are locally linear(differentiable). Even in d dimensions it’s
assumed the function looks linear in a local neighborhood. When performing GD, we need to keep our step
size η small to keep it “locally linear”.

Gradients

It might be sometimes easier to compute gradients coordinate by coordinate.

f(x) = xT Ax − bT x = Σn
i=1Σn

j=1aijxixj − Σn
i=1bixi

∂f

∂xk
= Σn

j=1akjxj + Σn
i=1aikxi − bk

Split into two cases: i = k and i ̸= k(j = k)

Answer: Ax + AT x − bk gradient at point x

GD: Minimizing f(w)

Initially, we choose w randomly. If ||∇f(w)|| < ϵ, stop and output w; otherwise

wnew = wold − η∇f(w)

8

GD: Linear Regression

Mean Squared Error(MSE) for linear regression is a convex function, since parabolas are convex, and we’re
taking positive sums of these convex functions, if this is for linear regression.

Where m is the number of traning data,

∇MSE(w) = 2
m

Σm
j=1(wT xj + b − yj) · xj

Derivation:
∂gj

∂wi
= 2 · (wT xj + b − yj)xj

i

∇gj(w) = 2 · (wT xj + b − yj)xj

The runtime complexity is O(m · n), because each sample is n-dimensional.

Stochastic Gradient Descent

We previously summed over all points in the training set. For SGD, we pick an index j at random and
compute the gradient w.r.t this point only. You can also use batches to interpolate between GD or pure SGD.
Batches help reduce the variance of the r.v..

wnew = wold − 2 · η(wT xj + b − yj) · xj

The reason why this works is because in expectation,

E[wnew] = wold − 2 · η · 1
m

Σm
j=1(wT xj + b − yj)xj

Step Size η

• Many techniques for adaptively choosing η
• This is more art than science. We can use cross-validation to pick η.
• momentum has a “velocity” variable

V0 = 0
Vi = α · vi−1 − ηgi

wnew = wold + Vi

Boosting

A weak learner is a learner that gets 51% accuracy on a training set. We construct an algorithm that uses
many sub-algorithms to come up with many classifiers with 51% accuracy. Then, you’ll re-adjust the training
distribution to add more weight to the points we got wrong. And because we still have to be 51% accurate,
it’s going to do better on the points we got wrong before because they’re more likely to be drawn. You then
take the majority vote of those classifiers.

Re-weight the points we got wrong in the training set to have slightly more weight than last time; the points
we got correct last time will have less weight. Then, take the majority of classifiers generated during this
process.

Adaptive Boosting

INPUT: A training set of size m

Initially D0 is the uniform dist. corresponding to wi = ∀i, where the distribution is obrtain by W (sum of all
weights)

E=error rate

A=accuracy=1-E
β = E

A

Concretely , E = 1
2 − γ

Thus
β = 1/2−γ

1/2+γ at every iteration

How to update weights : at iteration t, run A to obtain ht

For each xi s.t. ht(xi) is correct :
wnew

i = β · wold
i ;

otherwise if it incorrect , wnew
i = wold

i .

Repeat for t steps and output the majority vote of MAJ(h_1 ,... , h_t).

9

AdaBoost Error

After T iterations, err(hfinal) = MAJ(h1, ..., ht) ≤ e−2T γ2 means choose T ≈ 1
γ2 log(1

ϵ), then error of
hfinal ≤ ϵ.

AdaBoost Error Proof

Weight of correct points after iteration t, where W is the weight of the points before iteration T, is

(1/2 + γ) · β · W

Weight of incorrect points after iteration t, where W is the weight of the points before iteration T, is (use
β definition for substitution)

(1/2 − γ) · W

Thus, the total sum of all the weights is the sum of those two terms, which ends up being

W ((1/2 + γ)β + 1/2 − γ)

W · (2 · (1
2 − γ))

After i iterations, the sum of the weights is

Wo · (2 · (1
2 − γ))i

This implies after T iterations, the sum of all the weights (upper bound)

≤ (2 · (1/2 − γ))T · W0

Consider the point xi that hfinal gets wrong. It means in the majority of iterations, the point was labeled
incorrectly. This means the majority of the hypothesis got it wrong. It means we didn’t multiply it by β for
at least t/2 iterations. The weight of this point is weight(xi) ≥ βT/2.

If hfinal has error rate ϵ, then weight of points hfinal misclassifies is ≥ ϵ · m · βT/2(lower bound).

Therefore, error is less than total:

ϵ · m · βT/2 ≤ (2 · (1/2 − γ))T · m

...

ϵ ≤ (1 − 4γ2)T/2 using (1 + x ≈ ex)

ϵ ≤ e−2γ2T

After T iterations, the error of final hypothesis is at most ϵ ≤ e−2γ2T .

Adaboost Modifications

In the simplified version, we assumed accuracy was exactly 1
2 + γ. This change allows us to have a higher

accuracy if we encounter it.

βt = Et

At

Output:
sign(Σtαtht − 1

2)

where
αt = log(1/βt)

Σlog(1/βt)

How do we guarantee that hfinal generalizes? Make sure that m is sufficiently large.

Nothing in the boosting procedure depended on m directly, as long as the accuracy, γ is independent of the
size of the training set. If this is the case, then we have the freedom to choose m large enough to make sure
after T iterations of boosting, the number of classifiers times the size of the classifier is going to be less than
m.

If γ(accuracy) is independent from m, the size of the training set we can choose m to be sufficiently large.

10

Hedge

m experts from C1, ..., Cm. At each iteration, expert Ci suffers a loss of lt
i ∈ [0, 1] at iteration t.

We maintain a set of weights w1, ..., wm, one weight for each expert, and the weighted average is

Pi = wi

Σiwi

At tth iteration,
P t

i = wt
i

Σiwi

The loss we suffer at iteration t is pt · lt(dot product) is the weighted average of loss of the experts at iteration
t.

Total loss we suffer after t iterations is ΣT
t=1pt · lt

Hedge says the new weight should be wnew
i = wold

i · βlt
i . If the loss suffered by the ith expert is 0, then the

weight doesn’t change.

Your loss is
≤ miniΣT

t=1lt
i + O(

√
T log(m))

. This doesn’t look enticing because of the O factor but if you divide everything by T, the T will grow faster
than the

√
T , hence the average loss is converging to the loss of the very best expert.

Logistic Regression: Classification

This is classification by half-space. The loss function for classification for label yi ∈ 0, +1 is going to be the

sign(wtx)

for some vector w. We’ll be penalized if sign(wtxi) ̸= yi. This means yi · (wT xi) is negative; otherwise no
penalty.

This corresponds to 0-1 loss function. This is a non-convex loss function(bad).

l(z) =
{

1 z ≤ 0
0 z > 0

Classification: Optimization Problem

minw
1
m

Σm
i=1l0−1(yi · wT xi)

Logistic Regression: Linear Regression

minw
1
m

Σm
i=1(wT xi − y)2

If E[Y |X] = wT x, then the optimal approach is to perform linear regression and output the w.

The least squares loss function for regression

Regression → convex loss function (good)

Classification → non-convex loss function(0-1 loss) (bad)

Let’s relax the 0-1 loss to a different “surrogate loss” that’s related to 0-1 loss but they’ll be convex. You
won’t get the same solution as a 0-1 loss because it’s NP-hard but you’ll get solutions that are close.

Losses

A few loss functions that are convex:

• ylogistic regression(z) = log (1 + e−z)
• ylogistic regression(yi · wtxi) = log (1 + e−(yi·wtxi))
• yhinge = max(1 − z, 0) = max(1 − (yi · wtxi), 0)
• yexponential = e−z

Logistic Loss Optimization

L(w) = minw
1
m

Σm
i=1log(1 + e−yi·wT xi

)

We will use the sigmoid function and this fact(prove by multiplying first quantity by eˆz)

g(z) = 1
1 + e−z

g(z) + g(−z) = 1

11

Model for logistic regression:
Pr[y = yi|xi, w] = g(yi · wtxi)

What is the most likely w given the training set? Likelihood

Likelihood(w) = Πm
i=1P (y = yi|xi, w) = Πm

i=1g(yi · wT xi)

We want to maximize w,
log-likelihood(w) = Σm

i=1log[g(yi · wT xi)]

= −Σm
i=1log(1 + e−yi·wT xi

)

Minimizing Logistic Loss

The purpose of the log. loss function on w was to get a differentiable, convex function to run GD on to
minimize the logistic loss value. Once we find w′, we label future examples with +1 with probability g(w′T ·x),
where g is the sigmoid function.

ylog reg(z) = log (1 + e−z)

∂ylog reg(z)
∂z

= −e−z

1 + e−z
= − 1

1 + ez
= −g(−z)

If we take an example on
∂ylog reg(y · wT x)

∂wk
= −g(−y · wT x) · (y · xk)

This precisely tells us how to find the max likelihood w.

Derivation of log. reg. with z
llogistic regression(z) = log (1 + e−z)

l′
logistic regression(z) = −e−z

1 + e−z
= − 1

1 + ez
= −g(−z)

Derivation of log. reg. with y · wT x. THis tells us how to find the max likelihood.

llogistic regression(z) = log (1 + e−y·wT x)

∂l′
logistic regression(y · wT x)

∂wk
= −g(−y · wT x) = −g(−y · wT x) · y · xk

Multinomial Logistic Regression

We’ll have w1, ..., wk−1 vectors is going to be

Pr[y = 1|x] ∝ ew1T ·x

Pr[y = j|x] ∝ ewjT ·x

We only have k − 1 vectors because the Pr[y = k] = 1 − Σk−1
i=1 Pr[y = i]

The loss we should use is the cross-entropy loss, which is a generalization of logistic loss.

Cross-entropy loss
−Σk

i=1yilog(pi)

The softmax converts real-values into probabilities with (ez1

z , ez2

z , ...).

PCA

Probably the most important technique in reducing dimensionality of your data. PCA objective is to find the
eigendecomposition of a covariance matrix.

The goal is to find v1, ..., vk orthogonals s.t. ||v||2 = 1 where

max(1
m

)Σm
j=1Σk

i=1⟨xj , vi⟩2 is maximized

This is referred to as the direction of the maximum variance, also the sample variance. The expectation is 0
in this case.

Where A corresponds to the covariance matrix (XT X or 1
n XT X). Alternatively, this is written as

maxv,||v||=1V T AV

12

PCA Preprocessing

1) Subtract the mean from your data
2) Normalize the columns by the standard deviation. For every feature i, you compute

√
1
m Σm

j=1(xj
i)2 = σi,

then divide the i th features by σi, where j ranges from to 0 to m.
3) Compute the eigenvalue/eigenvector decomposition of your matrix QDQT

4) First k rows of QT are the top k eigenvectors/principal components

To prove i th row of QT is an eigenvector of A,

ith row of QT = Q · ei

A · Q · ei = QDQT Q · ei = QDei = λi · Q · ei

PCA Derivation

Suppose we have a matrix X that encodes our training set S by m × n. We’ll then look at 1
m XT X(n × n),

which is a sample covariance matrix.

Note: XT X is a symmetric matrix.

All eigenvalues of symmetric matrices are ≥ 0. For a matrix A, v is an eigenvector if A · v = λ · v where
λ ∈ R.

You can write a sample covariance matrix as a diagonal matrix times some rotation matrix.

Take a vector v, then $we don’t know A is diagonal but we know that A = QDQT , where A is almost
diagonal.**

Where e1 = (1, 0, ..., 0), choose v = Q · e1 which maximizes the top eigenvector of A.

You can think of Q as rotational matrices that transform a matrix but don’t change the magnitude of the
vectors. You can write a covariance matrix as a diagonal matrix times some rotation matrices.

Spectral Therorem:

This theorem establishes the relationship between matrices of the form XT X and their eigendecompositions.

Any symmetric matrix A has an eigendecomposition

A = Q · D · QT

where Q is an orthogonal matrix and D is a diagonal matrix(entries ∈ R are the eignvalues of A). Furthermore,
if A = XT X, then all eigenvalues are ≥ 0. Because covariance matrices are symmetric, then all of the
eigenvalues are positive; however, eigenvalues could be negative if it’s not a symmetric matrix.

Claim 1: for any V , V T AV ≥ 0. We’re taking an inner product of it self, so it must be greater than 0.
Recall that A = XT X.

V T AV = (XV)T · (XV)

Claim 2: Matrix A cannot have any negative values(proof by contradiction).

Let’s assume that λi < 0, and we know that A = QDQT (because symmetric matrix), let’s consider v = Q · ei.
Then, V T AV is eT

i QT QDQT Qei. Q is orthogonal, so it goes to identity. This leaves us with

eT
i Dei < 0

We take the inner product with ei because it picks out that one negative value. We know that it’s less than 0
but that contradicts our claim.

Defining SVD

Every matrix A can be written as A = U · S · V T , where U is an m × m orthogonal matrix, V is an n × n
orthogonal matrix, and S is an m × n diagonal matrix. The rows of V T are the right singular vectors, and
columns of U are the left singular vectors. Entries of S are s1 ≥ s2 ≥ ... ≥ 0. Singular values are unique but
singular vectors are not unique. The computation time of SVD is O(m2n) or O(n2m).

A = Σmin(n,m)
i=1 = siui · vT

i (dot is the outer product)

We can define a matrix to have rank k if A = Y ZT , where A is m × n, Y is m × k, and ZT is k × n. This is
important because if we could factor A into k(m + n) entries, we would be able to compress it. The result
is still a m × n matrix. The goal is to find a matrix A′ that has rank k and minimizes ||A − A′||F over all
rank-k matrices.

In the Netflix Challenge example mentioned in class, we assumed rank=1 where each row is a multiple of
some other row. A rank-0 matrix is an all zeros matrix, a rank-1 matrix is all rows are multiples of each
other or all columns are multiples of each other. A rank-2 matrix means A is the sum of two rank-1 matrices
and A is not rank-1.

13

SVD: Matrix Completion

A common approach is to replace the question marks/unknowns with either 0, the average of all known
values, or average value in that column or row. Then, we find the best rank k approximation to the matrix
after filling the question marks in. This outputs the best rank k approximation.

SVD: Choosing K

A common heuristic for choosing k is to take enough singular values so that the sum of the remaining values
is ≤ 1

10 for the taken values.

For the linear regression case, if A = D(where A is what we’re trying to solve for), then let x1 = b1
d1

since it
will best align with ||Ax − b||2. Repeat this for all n dimensions. We can let the pseudo-inverse of D to be
D†. The solution is x = D† · b in the easy case when A is diagonal. Each diagonal entry is 1

d1
, 1

d2
, in D†

in the easy case.

In the general case, for linear regression, knowing that if U is an orthogonal matrix, ||Ux|| = ||x||.

||Ax − b||2 ≡ minx||USV T x − b||2

Multiplying by U t and letting (y = V T x) ≡ (V y = x),

≡ minx||USy − b||2

Knowing y = S† · UT b,
y = S† · UT b

x = V S†UT b (solution to linear least squares)

We don’t need to worry that the matrix A is invertible or not.

SVD: Application for PCA

We had a covariance matrix XT X.

XT X = (USV)T · (USV T)

≡ V T S(UT U)SV T

≡ V T S2V T

V and V T are both orthogonal matrices. We got the eigendecomposition for free. The right singular vectors
of X(rows of V T) are the principal components (top eigenvectors of XT X). The singular values are the
square root of the eigenvalues of XT X. In other words, we square the singular values to get the eigenvalues.

Maximum Likelihood Estimation
The general idea is to estimate parameters of probabilistic models. We want to maximize θ where

θ = argmaxθL(θ) = argmaxθp(D|θ)

We can also use log(...) of the function as well because the log is a monotonically-increasing function. If
the θ maximized the original function, it should also maximize the log of that function. The small l is the
log-likelihood function. Then take the gradient and set it to 0.

l(θ) = log (L(θ))

Parameter Estimation by Maximum Likelihood Estimation
Independent and identially distributed following an unknown distribituion p⋆ from a parametric family of
distributions, estimate θ.

{p(·|θ) : θ ∈ Θ}

Likelihood function
L(θ) = P (x1, ..., xn|θ) = Πn

i=1p(xi|θ)

Log-likelihood function

l(θ) = log(L(θ)) = P (x1, ..., xn|θ) = log(Πn
i=1p(xi|θ))

= Σn
i=1log(p(xi|θ))

Maximum Likelihood Estimation:
θ̂ = argmaxθl(θ)

We can often solve using closed form solutions but generally, we can solve using numerical methods.

14

MLE: Bernoulli
Bernoulli reformulation for x = 0(θ), 1(1 − θ):

Pr(x) = exw

1 + ew

MLE: Gaussian Distribution
N(µ, σ2), where µ is the center/mean and the width of the peak is the σ(std. deviation) and variance is σ2.
If we take the integral, the area is 1. An example is the stock market where you know the prices and with
MLE you can estimate the mean and variance.

p(x|θ) = 1
(2π)1/2σ

exp(− 1
2σ2 (x − µ)2), θ = µ, σ

l(θ) = maxµ,σ
−n

2 log(2π) − nlog(σ) − 1
2σ2 Σn

i=1(xi − µ)2

µ̂ = argminµ(Σn
i=1(xi − µ)2)

We get the empirical mean
∂l(θ)
∂µ

= 1
n

Σn
i=1xi

We get the empirical variance
∂l(θ)
∂σ

= σ̂2 = 1
n

Σn
i=1(xi − µ̂)2

MLE: Uniform Distribution TODO
Where 1/θ for some x ∈ [0, θ] and 0 otherwise. We can’t use log-likelihood directly because it’s sometimes 0.
We’ll use the product directly(Π).

P (x|θ) = 1
θ

1(x ∈ [0, θ])

MLE: Regression TODO
MLE: Theoretical Properties

• bias(θ̂) = Eθ⋆ [θ̂(x1, ..., xn)] − θ⋆ - bias measures the difference between the mean and true value
• var(θ̂) = Eθ⋆ [(θ̂(x1, ..., xn) − Eθ⋆(θ̂(x1, ..., xn)))2] - variance measures fluctuation around the mean
• MSE(θ̂) = Eθ⋆ [(θ̂(x1, ..., xn) − θ⋆)2]
• If bias(θ̂) = 0, then it’s considered an unbiased estimator
• Constitent estimators imply asymptotic unbiasedness
• If you are unbiased, you cannot imply consistency
• MSE(θ̂) → 0 as n approches infinity, then it’s consistent.
• “Asymptotic Unbiased” - bias goes to 0 as n goes to infinity
• Consitent Estimator implies asymptotic unbiasedness but doesn’t imply direct unbiasedness

Bias-Variance Decomposition
MSE(θ̂) = (BIAS(θ̂))2 + VAR(θ̂)

KL Divergence
It’s a way of measuring the difference between two distributions. MLE can be viewed as minimizing this notion
of difference between data distrubtion and model distribution. Note that KL(q||p) ̸= KL(p||q). Maximizing
the log-likehood function is equivalent to minimizing the KL divergence between the data distribution and
the model.

KL(q||p) = Eq[log q(x) − log p(x)]

If it’s discrete, then it’s
Eq[p(x)

q(x)] = Σxq(x)
(

log q(x)
p(x)

)
Otherwise it’s continuous and it’s ∫

q(x)
(

log q(x)
p(x)

)
dx

Properties of KL:
KL(q||p) ≥ 0 for any q and p

KL(q||p) = 0 if and only if q = p

Jensen’s Inequality for convex functions:
Eq[f(x)] ≥ f(Eq(x))

15

Bayesian Inference
Bayesian Inference is another technique for estimating parameters but have the advantage of incorporating
prior information as well as qualifying uncertainty.

P (θ|D) = P (D|θ)P (θ)
P (D) ∝ P (D|θ)P (θ)

P (θ|D) (posterior)

P (D|θ) (likelihood)

P (θ) (prior)

P (D) =
∫

P (D|θ)P (θ)dθ

Math Review
TOOD log rules here / stats probs rules like variance and so forth , derivatives of logs TODO linearity of
expectation

−log(x) = log(1
x

)

1 − x ≈ e−x

1 + x ≈ ex

ln(x) ≈ x − 1

|u · v| ≤ ||u|| ||v||

covariance(x, y) = E[x · y] − E[x] · E[y]

TODO WRITE VARIANCE and SAMPLE FORMULA $$ The two-norm is the square root of the squares.

Gradient for d-dimensions,
∇f(x) = (δf

δx1
x, ...,

δf

δxd
x)

lt is a vector of losses suffered by all experts at the t’th iteration. The goal is for the sum of our losses after t
iterations should be “close” to the best expert in hindsight.

Linear Algebra

• Frobenious Norm:
√

Σi,jA2
i,j

• Where A is an orthogonal matrix, then

– A−1 is an orthogonal matrix
– AT is an orthogonal matrix
– AT A = AAT = I
– A−1 = AT

• projva = a·v
||v||2 v

• If A and B are symmetric matrices of the same size, then AB = BA.

Statistics
Overall Accuracy

PD[f(x) = y] = 1
n

n∑
i=1

I(f(xi) = yi) = TP + TN

TP + FP + TN + FN

Gaussian
P (x) = 1

σ
√

2π
e−(x−µ)2/2σ2

16

Probability
Union bound: for any two sets A,B and a distribution D we have

D(A ∪ B) ≤ D(A) + D(B).

VAR[X] = E[(X − E[X])2] = E[X2] − E[X]2√
VAR[X] = standard deviation(X) = σ

µ = E[X]

Sample Variance:

S2 = Σ(xi − x)2

n − 1 =

We know that this is at most norm of w times norm of w star.

We know the square of the norm of w is at most t. Therefore, the norm of w is at most
√

t.

17

	Machine Learning
	Introduction
	Mistake-Bounded Model of Learning
	On-Line Algorithms

	Decision Trees
	Building a Tree
	Structure of Tree
	Random Forest Termination Criterion
	Generalization
	Generalization
	Probably Approximately Correct(PAC) Learning
	PAC Sampling
	Efficiency
	Sample Complexity
	Corollary 3.2
	When can we learn a function class, and which function classes?
	Errors Revisited
	PAC-Learning Axis-Parallel Rectangles
	Half Spaces

	Cross-Validation
	Chernoff Bound
	Markov’s Inequality
	Chebyshev’s Inequality
	Perceptron Learning
	Complicated LP Solver
	Perceptron Algorithm
	Peceptron Convergence Theorem
	Proof of MB on Perceptron
	Perceptron: Error Bound Proof
	Polynomial Threshold Functions
	Polynomial Threshold Functions Run-time
	Kernel Perceptron
	Simple Kernel Function
	Other Kernel Functions
	Linear Regression
	Simple Linear Regression
	Linear Regression with Multiple Variables
	Linear Regression: Maximum Likelihood
	Vector Linear Regression: Convexity
	Gradient Descent
	Gradients
	GD: Minimizing f(w)
	GD: Linear Regression
	Stochastic Gradient Descent
	Step Size \eta
	Boosting
	Adaptive Boosting
	AdaBoost Error
	AdaBoost Error Proof
	Adaboost Modifications
	Hedge
	Logistic Regression: Classification
	Classification: Optimization Problem
	Logistic Regression: Linear Regression
	Losses
	Logistic Loss Optimization
	Minimizing Logistic Loss
	Multinomial Logistic Regression
	PCA
	PCA Preprocessing
	PCA Derivation
	Spectral Therorem:
	Defining SVD
	SVD: Matrix Completion
	SVD: Choosing K
	SVD: Application for PCA

	Maximum Likelihood Estimation
	Parameter Estimation by Maximum Likelihood Estimation
	MLE: Bernoulli
	MLE: Gaussian Distribution
	MLE: Uniform Distribution TODO
	MLE: Regression TODO
	MLE: Theoretical Properties
	Bias-Variance Decomposition
	KL Divergence
	Bayesian Inference

	Math Review
	Linear Algebra
	Statistics
	Probability

