
Linear Algebra Review
1. The Field
Definition of a Field

The notion of a field is a collection of values with a plus operation and a times operation. Three examples
are the fields of real numbers, complex numbers, and GF(2)(the field consisting just of zero and one).

Complex Number Defitions and Properties

• iii2 = −1 or alternatively, iii =
√

−1
• The sum of a real number and an imaginary number is called a complex number. A complex number

has a real part and an imaginary part.
• The conjugate of a complex number z, written z, is defined as z.real − z.imag.
• An alternative definition for the absolute value or the distance from the origin to the point in the

complex plane: |z|2= z · z
• A translation is f(z) = z0 + z where z0 is a complex number.

Definition of Galois Field GF(2)

It consists of two elements, 0 and 1.

• The arithmetic operation is a + b mod 2. It can be thought of as as an exclusive-or.
• The multiplication should be treated as standard multiplication.

Abstracting over Fields

Linear Algebra concepts, theorems, and procedures work because of the definition of a field and that these
fields satisfy basic laws such commutativity and distributivity.

2. The Vector
Definition 2.1.1

A vector with four entries, each of which is a real number, is called a 4-vector over R. The entries of a vector
must all be drawn from a single field.

Definition 2.1.2

For a field F and a positive integer n, a vector with n entries, each belonging to F, is called an n-vector over
F. The set of n-vectors over F is denoted Fn.

Definition 2.2.2

For a finite set D and a field F, a D-vector over F is a function from D to F.

Sparsity

• spare representation is omission of key-value pairs whose values are zero
• a vector most of whose values are zero is called a sparse vector
• an k-sparse vector is defined as a vector that contains no more than k non-zero entries

Definition 2.4.1

Addition of n-vectors is defined in terms of addition of corresponding entries:

[u1, u2, ..., un] + [v1, v2, ..., vn] = [u1 + v1, u2 + v2, ..., un + vn]

Proposition 2.4.5 Associativity and Commutativity of Vector Addition

For any vectors uuu, vvv, www,
(uuu + vvv) + www = uuu + (vvv + www)

and
uuu + vvv = vvv + uuu

Zero Element

Every field F has a zero element, so the set FD of D-vectors over F necessarily has a zero vector, a vector all
of whose entries have value zero. This is denoted by 000D, or merely by 000 if it is not necessary to specify D.

Proposition 2.5.5 Associativity of scalar-vector multiplication

α(βvvv) = (αβ)vvv
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Proposition 2.6.5 Scalar-vector multiplication distributes over scalar and vector addition

(α + β)uuu = αuuu + βuuu

α(uuu + vvv) = αuuu + αvvv

Convex Combination

An expression of the form αvvv + βvvv where α, β >= 0 and α + β = 1 is called a convex combination of uuu and
vvv. This is true for any pair uuu,vvv of distinct n-vectors over R. The uuu-to-vvv line segments consists of the set of
convex combinations of uuu and vvv.

Affine Combination

An expression of the form αuuu + βvvv where α + β = 1 is called an affine combination of uuu and vvv. The line
through uuu and vvv consists of the set of affine combinations of uuu and vvv.

Invertible Functions

A function is invertible if it is one-to-one and onto. Every function has at most one functional inverse.

Identity Function

Function g is the functional inverse of f if f ◦ g and g ◦ f are the identity functions on their domains.

Vector Subtraction

Vector subtraction is defined in terms of vector addition and negative: uuu-vvv is defined as uuu + (−uuu). Vector
subtraction is the functional inverse of vector addition, and this fact can be verified with a composition.

2.9 Dot-product / Scalar product

For two D-vectors uuu and vvv, the dot-product is the sum of the product of the corresponding entries:

uuu · vvv =
∑
k∈D

uuu[k]vvv[k]

Dot-product can be used to measure similarity between vectors over R.

2.9.8 Algebraic properties of the dot-product

These properties hold regardless of the choice of the field.

Dot-product Commutativity When you take a dot-product of two vectors, the order of the two does not
matter:

uuu · vvv = vvv · uuu

Dot-product Homogeneity
(αuuu) · vvv = α(uuu · vvv)

Dot-product distributes over vector addition

(uuu + vvv) · www = uuu · www + vvv · www

Definition 2.9.6 Linear Equation

A linear equation is an equation of the form α · xα · xα · x = β, where ααα is a vector, β is a scalar, and xxx is a vector
variable. The scalar β is called the right-hand size of the linear equation because it is conventionally written
on the right of the equals sign.

Definition 2.9.10 Linear System

In general, a system of linear equations(often abbreviated linear system) is a collection of equations:

aaa1 · xxx = β1

aaa2 · xxx = β2

...

aaam · xxx = βm

where xxx is a vector variable. A solution is a vector x̂̂x̂x that satifies all the equations.

Linear Filter

Searching for a short audio segment in a longer audio segment by padding the short audio segment with
zeroes is called a linear filter. The short segment plays the role of a kernel.
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Triangular System of Linear Equations

This representation of a “square” linear system whose upper-right triangle consists of possibly non-zero values
but the lower-left must consist of zero values.

Backward Substitution A triangular system can be solved using backward substitution by starting by
solving the last row first and solving each previous row one by one.

Proposition 2.11.5 For a triangular system specified by a length-n list rowlist of n-vectors and an n-vector
bbb, if rowlist[i][i] ̸= 0 for i = 0, 1, . . . , n − 1 then the solution found by triangularsolven(rowlist, b) is the only
solution to the system.

Proposition 2.11.6 For a length-n list rowlist of n-vector, if rowlist[i][i] = 0 for integer i then there is a
vector bbb for which the triangular system has no solution.

3. Vector Space
3.1.1 Definition of Linear Combination

Suppose υυυ1, ...,υυυn are vectors. We define a linear combination of υυυ1, ...,υυυn to be a sum α1υυυ1 + ... + αnυυυn

where α1, ..., αn are scalars.

Trivial Linear Combination A linear combination is considered a trivial linear combination if all of its
coefficients are zero.

Forward Problem

Given an element of the domain, find the image under the function.

Backward Problem

Given an element of the co-domain, find the pre-image, if one exists.

3.2.1 Span

The set of all linear combinations of vectors υυυ1, ...,υυυn is called the span of these vectors, and is written Span
{υυυ1, ...,υυυn}.

• The span of an empty set is the zero vector, which can be expressed as Span{} = {0}. The zero vector
is also the origin.

• A geometric object such as a point, a line, or a plane is called a flat. It can also be considered an affine
space that is a subset of Rn for some n.

Mathematically expressed as
Span{vvv} = {α vvv : α ∈ R}

Flat Dimensionality The span of k vectors over R forms a k-dimensional flat containing the origin or a
flat of a lower dimension containing the origin. A flat geometric object such as a point, a line, or a plane is
called a flat. Flats exist in higher dimensions as well.

Definition 3.2.9 Generators

Let V be a set of vectors. If vvv1, ..., vvvn such that V = Span{vvv1, ..., vvvn} then {vvv1, ..., vvvn} is a generating set for
V, and we refer to the vectors vvv1, ..., vvvn as generators for V.

3.2.9 Generators

Let V be a set of vectors. If υυυ1, ...,υυυn are vectors such that V = Span {υυυ1, ...,υυυn} then we say that {υυυ1, ...,υυυn}
is the generating set for V, and we refer to the vectors υυυ1, ...,υυυn as the generators for V.

Standard Generators

[x, y, z] = x[1, 0, 0] + y[0, 1, 0] + z[0, 0, 1]

The coordinate representation of [x,y,z] in terms of these generators is [x,y,z]. These are the standard
generators for R3. We denote them by eee0, eee1, and eee2. For any finite domain D and field F, there are standard
generators for FD. For each k ∈ D, eeek is the function k : 1. It maps k to 1 and the maps all the other domain
elements to zero.

3.3.8 Definition Homogeneous linear equation

A linear equation with a right-hand size of zero is called a homogeneous linear equation.
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3.3.11 Definition Homogeneous linear system

A linear system (collection of linear equations) with all right-hand sides zero is called a homogeneous linear
system.

Note: A flat containing the origin is the solution set of a homogeneous linear system.

Vector Space Properties The following three properties apply regardless of whether this is a solution set
of a linear system or a subset V of FD, where V is the span of some D-vectors over F

1. V contains the zero vector
2. For every vector υυυ, if V contains υυυ then it contains αυυυ for every scalar α, is closed scalar-vector

multiplication.
3. For every pair uuu and υυυ of vectors, if V contains uuu and υυυ , then it contains uuu + υυυ. In other words, it’s

closed under vector addition.

Definition 3.4.1 Vector Space Definition A set V of vectors is called a vector space if it satisfies the
three vector space properties.

• F is a vector space because it contains the zero vector and is closed under scalar-vector multiplication
and vector addition.

• the span of some vectors is a vector space
• the solution set of a homogeneous linear system is a vector space
• flats, such as a line or a plane, that contain the origin can be written as the span of some vectors or as

the solution set of a homogeneous linear system, and therefore such a flat is a vector space

Proposition 3.4.6

For any field F and any finite domain D, the singleton set consisting of the zero vector 000D is a vector space.
A flat containing the origin is the solution set of a homogeneous linear system.

Definition 3.4.7

A vector space consisting only of the zero vector is a trivial vector space. Furthermore, the minimum number
of vectors whose span is {000D} is zero, which is computed from the empty set of D-vectors.

Definition 3.4.9

V and W are vector spaces and V is a subspace of W, we say V is a subspace of W.

Affine Spaces

• {aaa + υυυ : υυυ ∈ V} can be abbrevated as aaa + V, where V is a vector space

Definition 3.5.2 Affine Combination

A linear combination of α1υυυ1 + ... + αnυυυn is said to be an affine combination, if the coefficients α1 + ... + αn

sum to one.

Affine Hull

The set of all affine combinations of a collection of vectors is called an affine hull of that collection.

• the affine hull of a one-vector collection is a single point (the one vector in the collection), i.e. a
0-dimensional object

• the affine hull of a two-vector collection is a line(the line through the two vectors), i.e. a 1-dimensional
object

• the affine hull of a three-vector collection is a plane (the plane through the three vectors), i.e. a
2-dimensional object

Definition 3.5.8 Affine Space

An affine space is the result of translating a vector space. That is, a set A is an affine space if there is a
vector aaa and a vector space V such that

A = {aaa + υυυ : υυυ ∈ V}

i.e. A = aaa + V. A flat is just an affine space that is a subset of Rn for some n.

Lemma 3.5.10

For any vectors uuu1, ...,uuun,{
α1uuu1 + ... + αnuuun :

n∑
i=1

αi = 1
}

= {uuu1 + υυυ : υυυ ∈ Span {uuu2 − uuu1, ...,uuun − uuu1}} .

In words, the affine hull of uuu1, ...,uuun equals the set obtained by adding uuu1 to each vector in the span of
uuu2 − uuu1,. . . ,uuun − uuu1. This shows that the affine hull of vectors is an affine space.
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• The solution set of a homogeneous linear system is a vector space. The solution set of an arbitrary
linear system is an affine space except in the case where the solution set is empty.

Two Representations of an Affine Space

• as aaa + V where V is the span of some vectors, and
• as the affine hull of some vectors.

Theorem 3.6.2 Solution is empty or an Affine Space

For any linear system, the set of solutions either is empty or is an affine space. Every vector space is the
solution space of a homogeneous system. Every affine space is a solution set of a linear system.

Corollary 3.6.4 Solution Uniqueness

Suppose a linear system has a solution. The solution is unique if and only if the only solution to the
corresponding homogeneous linear system is the zero vector.

4. Matrix
As we have defined a D over of F to be a function from a set D to F, so we define a R × C matrix over F to
be a function from the Cartesian product R × C. We refer to the elements of R as row labels and we refer to
the elements of C as column labels.

Definition 4.1.6 Identity Matrix

For a finite set D, the D × D matrix is the matrix whose row-labels and column-labels both belong to D.
There is a 1 for every (d, d), d ∈ D entry, there is a 1 in its place. All the remaining entries are 0. This is
denoted 1D or simply 1.

Definition 4.2.1 Column Space and Row Space

For a matrix M,

• column space of M, written Col M, is the vector space spanned by the columns of M, and
• row space of M, written Row M, is the vector space spanned by the rows of M.

For example, if c1, c2, and c3 are the columns of a matrix M, then the ColM = Span{c1, c2, c3}.

Definition 4.4.1 Transpose

Transposing a matrix means swapping its rows and columns. The transpose of an P × Q matrix, written
MT , is a Q × P matrix such that (MT )j ,i = Mi,j for every i ∈ P, j ∈ Q. We say a matrix M is symmetric
matrix if MT = M .

Matrix-vector and Vector-matrix Multiplication Outline

• Linear-combinations of Matrix-Vector multiplication: multiplying columns
• Dot-product of Matrix-Vector multiplication: multiplying rows
• Linear-combinations of Vector-Matrix multiplication: multiplying rows
• Dot-product of Vector-Matrix multiplication: multiplying columns

Definition 4.5.1 Linear-combinations definition of matrix-vector multiplication

Let M be an R × C matrix over F. Let υυυ be a C-vector over F. Then M ∗ υυυ is the linear combination∑
c∈C

υυυ[c] − column c of M

If M is an R × C matrix but υ is not a C-vector then the product M ∗ υ is illegal. In the traditional-matrix
sense, if M is an m × n matrix over F then M ∗ υ is legal only if υ is an n-vector over F. That is, the number
of columns of the matrix must match the number of entries of the vector.

Definition 4.5.6 Linear-combinations definition of vector-matrix multiplication

Let M be an R × C matrix over F. Let www be a R-vector. Then www ∗ M is the linear combination∑
r∈R

www[r] − row r of M

If M is an R × C matrix but www is not an R-vector then the product www ∗ M is illegal. This is a good moment
to point out that matrix-vector multiplication is different from vector-matrix multiplication; in fact, often
M ∗ vvv is a legal product but vvv ∗ M is not or vice versa. Because we are use to assuming commutativity when
we multiply numbers, the noncommutativity of multiplication between matrices and vectors can take some
getting used to.
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Computational Residual

The computed value of x in the linear equation M ∗ x = bbb might not yield a solution. Furthemore, the
computed vector might not be the exact solution. It is necessary to compute the residual, (bbb − M ∗ x)2, to
determine if it is indeed a solution. If it’s an exact solution, the residual will be 0. Depending on the domain,
this computation might be not be necessary if the domain is exact, e.g., GF (2).

Definition 4.6.1 (Dot-Product Definition of Matrix-Vector Multiplication)

If M is an R × C matrix and uuu is a C-vector then M ∗ uuu is the R-vector υυυ such that υυυ[r] is the dot-product of
row r of M with υυυ.

Definition 4.6.3 (Dot-Product Definition of Vector-Matrix Multiplication)

If M is an R × C matrix and uuu is a R-vector then uuu ∗ M is the C-vector υυυ such that υυυ[c] is the dot-product of
υυυ with column c of M.

Upper Triangular Matrix

A n×n upper-triangle matrix is a matrix whose Ai,j = 0 if i > j. Visually, this means the lower left portion of
the matrix is 0. The entries forming the triangle can be zero or non-zero. The definition applies to traditional
matrices. To generalize our matrices with arbitrary row- and column-label sets, we specify the orderings of
the label-sets.

Definition 4.10.20 Diagonal Matrix

For a domain D × D, a matrix M is a diagonal matrix if for all Mi,j = 0 where i ̸= j. Visually, only the
diagonal is allowed to be non-zero. The identity matrix is a special case of a diagonal matrix, where x = 1
instead of a variable coefficient.

Proposition 4.6.13 Algebraic properties of matrix-vector multiplication

Let M be an R × C matrix. * For any C-vector v and any scalar α,

M ∗ (αvvv) = α(M ∗ vvv)

• For any C-vectors v and u,
M ∗ (vvv + uuu) = M ∗ vvv + M ∗ uuu

Definition 4.7.1 Null Space

The Null Space of a matrix is the set {vvv : A ∗ vvv = 000}. It is written NullA. This is the equivalent of a
homogeneous linear sytem formulated as a matrix-vector equation. Since the Null Space is a homogeneous
solution, it inherits its properties, such as being a vector space.

Lemma 4.7.4

For any R × C matrix A and C-vector vvv, a vector z is in the null space of A if and only if A ∗ (vvv + z) = A ∗ vvv.

Corollary 4.7.5

We know that if two solutions to a system of linear equations differ by a vector that is a solution that solves
a corresponding homogeneous linear system. The same principle applies to the matrix-vector representation.

Suppose uuu1 is a solution fo the matrix equation A ∗ xxx = bbb. Then uuu2 is also a solution of and only if uuu1 − uuu2
belongs to the null space of A.

Corollary 4.7.6

Suppose a matrix-vector equation M ∗ xxx = bbb has a solution. The solution is unique if and only if the null
space of A consists solely of the zero vector, the trivial solution.

Definition 4.10.1 Linear Function

Let U and V be vector spaces over F. Let f : U −→ V is called a linear function if it satisfies the following
two properties:

• For any vector uuu in the domain of f and a scalar α, f(αuuu) = αf(uuu)
• For any two vectors vvv and uuu in the domain of f , f(uuu + vvv) = f(uuu) + f(vvv)

A synonym for a linear function is a linear transformation. Let M be an R × C matrix over a field F, and
define

f : FC −→ FR

by f(xxx) = M ∗ xxx. The domain and co-domain are the vectors spaces. By the algebraic properties of
matrix-vector multiplication(proposition 4.6.13), f is also a linear function. For any matrix M, the function
xxx 7→ M ∗ xxx is a linear function.
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Bilinearity of dot-product

The dot product function f(xxx,yyy) = xxx · yyy is linear in both its first and second arguments. We say that the
dot-product function is bilinear to mean that is linear in each of its arguments.

Linear Functions: Zero Vector

If f : U −→ V is a linear function, then the zero vector of U maps to the zero vector of V.

Definition 4.10.11 Kernels of Linear Functions

Analogous to the definition of the null space of a matrix, the kernel of a linear function is {vvv : f(vvv) = 0}. It
is written as the Ker f .

Lemma 4.10.15 One-to-One Lemma

A linear function is one-to-one if and only if kernel is a trivial vector space.

Lemma 4.10.19

If f : FC −→ FR is a linear function, then there is an R × C over F f(xxx) = M ∗ xxx where xxx is a vector xxx ∈ FC .

Matrix-Multiplication Lemma of Functional Composition

The matrices A and B define linear functions via matrix-vector multiplication: fA(yyy) = A∗yyy and fB(xxx) = B∗xxx.
Naturally, the matrix AB resulting from multiplying the two functions is fAB(xxx) = (AB) ∗ xxx. This implies
function composition.

fAB = fA ◦ fB

Matrix Multiplication is Associative

(AB)C = A(BC)

Proposition 4.11.14 Transpose of Matrix-Matrix Product

For matrices A and B, (AB)T = BT AT

Column Vector

A column vector is a matrix M with one column that acts like vector multiplied from its left.

Row Vector

A row vector is a matrix M with one row that acts like a vector multiplied from the right.

Inner Product

Let uuu and vvv be two D-vectors. Consider the matrix-matrix product of uuuTvvv, the result of which is a dot
product that yields a single value.

Outer Product

Let uuu and vvv be two vectors not necessarily of the same domain. Consider the matrix-matrix product of uuuvvvT .

Inverse of a Linear Function is linear

If f is a linear function and g is its inverse, then g is also a linear function.

Matrix Inverse

Let A be an R × C matrix over F, and B be a C × R matrix over F. Define function f : FC −→ FR by
f(xxx) = A ∗ xxx and g : FR −→ FC by g(yyy) = B ∗ yyy. If f and g are functional inverses, then matrices A and
B are said to be inverses of each other. If A has an inverse, then we say A is an invertible matrix. It can
be shown using the uniqueness of a functiona inverse(Lemma 0.3.19) that a matrix has at most one inverse.
Matrix inverses are denoted by A−1. A matrix that is not invertible is called a singular matrix.

Uses of Matrix Inverse

If R × C has matrix A has an inverse A−1, then AA−1 is the R × R identity matrix.

Lemma 4.13.13 Diagonal Matrix Invertability

Suppose A is an upper-triangle matrix. Then A is invertible if and only if none of its diagonal elements is
zero.
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Proposition 4.13.14

If A and B are invertible matrices and matrix product AB is defined, the AB is an invertible matrix and
(AB)−1 = B−1A−1.
Note: A and B do not necessarily have to be inverses of one another! These could be any random A and B
matrices that have the aforementioned properties.

Corollary 4.13.19

Matrices A and B are inverses of each other if and only if both AB and BA are identity matrices.

5. Vector Space
Coordinate System

The coordinate system for a vector space V is specified by its generators a1a1a1, ..., ananan of V. Every vector vvv can
be written as a linear combination whose coefficients, or coordinates, are α and whose generators are a :
vvv = α1aaa1 + ... + αnaaan . The vector [α1, ..., αn] is called the coordinate representation of vvv in terms of a1a1a1, ..., ananan

.

Greedy algorithms for finding a set of generators

Given a vector space V, find the minimum number of vectors whose span is equal to V.

Grow algorithm Start with an empty set B whose span will ultimately contain the generators for V. For
each vector v in V, insert it into B if it’s not in the Span B. This algorith is not resctrive because it doesn’t
stop until it iterates through all the vectors in V or finds a vector v that isn’t in the span of Span B. This is
a greedy algorithm makes a choice without giving thought to the future.

Shrink algorithm Start with a non-empty set B whose span will ultimately contain the generators for
V. For each vector v in B, remove it only if Span(B − v) = V. Continue repeating this while possible. The
algorithm stops when there is no vector whose removal would leave a spanning set. This greedy algorithm
makes a choice without giving thought to the future.

Dominating set

A dominating set is a set of nodes in a graph such that every node in the graph is in the set
or is a neighbor(reachable by one edge from a node in the dominating set). The goal of the
minimum-dominating-set problem is to find a dominating set of minimum size.

Definition 5.4.1 x-to-k path

For a sequence of edges in graph G,
[{x1, x2}, ..., {xk−1, xk}]

is called an x1-to-xk path.

Definition 5.4.2 Spanning edges

A set S of edges is spanning, if for every edge {x, y} in G, there is a path x-to-y (sequence of edges from node
x to node y) of edges in S.

Definition 5.4.3 Forest

A forest is a set of edges containing no cycles(loops consisting of several edges).

Definition 5.5.1 Superfluous-Vector Lemma

For a vector vvv in S, if vvv can be written as a linear combination of the other vectors in S, then Span(S −{vvv}) =
Span(S). The vector is then superfluous.

Linear Dependence: Vectors

Vectors vvv1, ..., vvvn are linearly dependent if there is a nontrivial linear combination of the vectors that equals
the zero vector.

000 = α1vvv1, +... + α1vvvn

We refer to the linear combination as a linear dependency in vvv1, +... + vvvn.

Definition 5.5.2 Linear Independence: Vectors

Vectors vvv1, ..., vvvn are linearly independent if the only solution is the trivial solution. Stated alternatively, if the
only linear combination is the trivial linear combination, then it said these vectors are linearly independent.

000 = α1vvv1, +... + α1vvvn

This is the same as asking if the null space of a matrix contains a non-trivial vector as a solution and if the
solution of a homogeneous linear system is trivial.
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Definition 5.5.8 Subset Linearity

The subset of a linearly independent set of vectors is also linearly independent.

Definition 5.5.9 Span Lemma

Let vvv1, ..., vvvn be vectors. A vector vivivi is in the span of the other vectors if and only if the zero vector vector
can be a written as a linear combination of all the vecotrs with a non-zero coeficient for vivivi.

Corollary 5.5.10 Grow-Algorithm Linearity

The vectors obtained by the Grow algorithm are linearly independent.

Corollary 5.5.11 Shrink-Algorithm Linearity

The vectors obtained by the Shrink algorithm are linearly independent.

Definition 5.6.1 Basis

Let VVV be a vector space. A basis of this vector space is linearly independent set of generators for VVV . A set B
of vectors that is a basis for VVV satisfies two properties:
1. the generators are linearly independent
2. Span B = VVV

Lemma 5.6.9 Standard Basis Vectors

The standard generators for FFF D for a basis.

Lemma 5.6.11 Subset-Basis Lemma

Any set T of vectors contains a subset B that forms a basis for Span T .

Lemma 5.7.1 Unique-Representation Lemma

Let aaa1, ..., aaa2 be a basis for a vector space VVV . For any vector vvv ∈ VVV , there is exactly one representation of vvv in
terms of the basis vectors. We often represent each vector in a vector space by its coordinate representation
[α1, ..., αn]. This implies that the funcion that maps the set of basis vectors is both one-to-one and onto. It’s
both one-to-one, where it is presented uniquely in both the forwards and backwards direction, and it is onto
because it spans the entire original set by the definition of bases(otherwise it wouldn’t be a basis for this
vector space).

Change of Basis

Suppose you have two non-equal sets of bases for VVV . Given the properties of a basis, we’re able to deduce
that transformation(function that maps coordinate to vector) that transforms the first basis to the second,
and vice-versa, is invertible. This is intuitive because the basis functions are also one-to-one and onto.

Two Natural Ways of Specifying a Vector Space VVV

1. You can specify the generators for VVV . This is equivalent to specifying a matrix A such that VVV = ColA.
2. Specifying a homogeneous linear system whose solution set is VVV . This is equivalent to specifying a

matrix A such that VVV = NullA.

Lemma 5.11.1 Exchange Lemma

Suppose S is a set of vectors and A is a subset of S. Suppose z is a vector in Span S but not in A such that
A ∪ {z} is linearly independent. Then there is a vector w ∈ S − A such that Span S = Span {z} ∪ S − {w}.

The proof involves setting z as a linear of combination of vectors from S and A. In the process, you’ll realize
that there must be at least one non-zero coefficient of the combinations of S; otherwise, A and {z} would be
linearly dependent. Now you express the linear combination on one side, including z, but move the non-zero
vector(w ∈ S) to the other side. With this new formulation, you can remove this superfluous vector by the
Superfluous-Lemma Vector Lemma and introduce z. You’ve now exchanged a vector.

6. Dimension
Lemma 6.1.1 Morphing Lemma

Let V be a vector space. Suppose S be any generating set for V and B, a linearly independent set, belonging
to V . Then |S| ≥ |B|.

Theorem 6.1.2 Basis Theorem

Let V be a vector space. All bases for V have the same size.

This can be proved by selecting any two bases of V and then expressing each as S in the Morphing Lemma.
Since in both cases the inequality is such that the size of the generators is greater than or equal to the size of
either basis, it must be that the bases are the same size.
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Theorem 6.1.3 Smallest Set for Basis

Let V be a vector space. Then a set of generators for V is a smallest set for V if and only if the set is a basis
for V .

The proof involves identifying T as a basis for V and S as the smallest generating set for V . By the Morphing
Lemma, |T | ≤ |S|, so T is also the smallest set of generators. If T is not a basis for V , then there is a set of
generators smaller than T .

Definition 6.2.2 Dimension

We define the dimension of a vector space as the size of the basis for that vector space. The dimension of a
vector space V is written dimV .

For any field F and any finite set D, one basis for FD is the standard basis, which consists of |D| vectors.
Therefore FD has dimension |D|.

Definition 6.2.5 Rank

We define the rank of a set S of vectors as the dimension of Span S.

Proposition 6.2.8

For any set S of vectors, rank S ≤ |S|.

Definition 6.2.9

For a matrix M, the row rank of M is the rank of its rows, and the column rank is the rank of its columns.
Equivalently, the row rank of M is the dimension of the rowspace of M, and the column rank of M is the
dimension of column space of M.

Lemma 6.2.13 Superset-Basis Lemma

For any vector space V and any linearly independent set A of vectors, V has a basis that contains all of A.

Lemma 6.2.14 Dimension Principle

If V is a subspace of W , then

1. dim V ≤ dim W
2. if dim V = dim W , then V = W

Proposition 6.2.17

Any set of D-vectors has rank at most |D|.

Lemma 6.2.18 Grow Algorithm Termination Lemma

If dim V is finite, then GROW (V ) terminates.

Corollary 6.2.19

For finite D, any subspace of FD has a basis.

Theorem 6.2.20 Rank Theorem

For any matrix, the row rank equals the column rank.

The proof first involves identifying that the rank of a row space is at most the rank of a column space using
the matrix-vector multiplication definition of basis of the column space. If you then reinterpret the same
equation in terms of vector matrix-multiplication and view the rows of the basis matrix as linear combinations
of the coordinates, you can see that the rank is the same or less than that of the rank of the coordinates.
We then show that the row rank is less than or equal to the column rank. If you then transpose the matrix,
you’ll have two inequalities. You combine them using the transitive property, you see that the row rank and
column rank must be equal.

Definition 6.2.21

We define the rank of a matrix to be its column rank, which is also equal to its row rank.

Definition 6.3.1 Direct Sum

Let U and V be two vector spaces consisting of D-vectors over a field F. If U and V share only the zero
vector, then we define the direct sum of U and V to be the set {u + v : u ∈ U, v ∈ V } written U ⊕ V . That is,
U

⊕
V is the set of all sums of a vector in U and a vector in V .

Proposition 6.3.5

The direct sum U ⊕ V is a vector space.
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Lemma 6.3.6 Generators of Direct Sum

The union of a set of generators for V and a set of generators for W is a set of generators for U ⊕ V .

Lemma 6.3.8 Direct Sum Basis Lemma

The union of a basis of U and a basis of V is a basis of U ⊕ V .

The proof involves expressing a linear combination of the union of the bases equal to 0 to show linear
independence. By moving one of the linear combinations to the other side of the equation, you can then say
that the only common vector between the vector spaces is the zero vector. Since they’re already the basis for
each vector space, they’re already linearly independent, so the linear combination, by definition, must be
trivial. The bases are also already generators, which meets the criteria for a new basis to be formed.

Corollary 6.3.9 Direct-Sum Dimension Corollary

dim U+ dim V = dim U ⊕ V .

Corollary 6.3.10 Direct-Sum Unique Representation Corollary

Any vector in U ⊕ V has a unique representation as u + v where u ∈ U ,v ∈ V .

The proof involves expressing this as a linear combination using its basis and then using the original Unique
Representation Lemma to show that its both one-to-one and onto.

Definition 6.3.11 Complementary Subspaces

If U ⊕ V = W , we say that U and V are complementary subspaces of W .

Definition 6.3.15 Missing Complementary Subspace

For any vector space W and any subspace U of W , there is a subspace V of W such that W = U ⊕ V .

6.4.2 Largest Invertible Subfunction

Let f : V −→ W be a linear function that is not necessarily invertible. Let’s define a function f∗ : V ∗ −→ W ∗

that is invertible. Let w1, . . . , wr be the basis for W ∗, and let v1, . . . , vr be the pre-images of the corresponding
basis in W .

• f∗ is onto because there is one pre-image for every wk.
• f∗ is one-to-one because the Kerf∗ = 0. This is proved by representing a vector in terms of its domain

and then converting the domain values to the co-domain values. We use the vectors that are the
pre-images of the basis in the co-domain and use these since they span V ∗. We then simply use our
function to convert back to the w basis vectors which are linearly independent. This show that f∗ is
one-to-one.

• v1, . . . , vr form a basis for V ∗. This is proved by expressing 0 in terms of vk with coefficients and
then converting to corresponding basis with wk. Because the basis of W* is linearly independent, the
coefficients must be 0; therefore, v1, . . . , vr form a basis for V ∗.

Theorem 6.4.3 Kernel Image

The construction of an invertible subfunction f∗ : V ∗ −→ W ∗ from a linear function f allows us to relate the
domain of the subfunction to the kernel of original linear function f : V = Kerf ⊕ V ∗.

Theorem 6.4.7 Dimension of Kernel-Image Theorem

For any linear function f : V −→ W , dim Kerf + dim Imf = dimV .

The proof involves writing the Kernel-Image Theorem in terms of dimensions(written as is) and then realizing
that the dimension of dimV ∗ = dim Imf because the size of basis of the domain and co-domain are equal.

Theorem 6.4.8 Linear-Function Invertibility Theorem

Let f : V −→ W be a linear function. Then f is invertible if and only if dim Kerf = 0 and dimV = dimW .

The dimension of the kernel implies that the function is one-to-one(trivial solution), and the dimension of the
domain and co-domain being equal implies that the function is onto.

Nullity of a Matrix

The nullity of a matrix is the dimension of the null space of the matrix.

Theorem 6.4.9 Rank-Nullity Theorem

For any n-column matrix A, rankA + nullityA = n.

The proof involves stating that the sum of the rank of A, the dimension of the column space of A, and the
nullity of A(dimension of the null space of A) is n.
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Corollary 6.4.10 Matrix Invertibility

Let A be an R × C matrix. Then A is invertible if and only if |R| = |C| and the columns of A are linearly
independent.

The proof involves converting the Linear-Function Invertibility Theorem to its matrix counterparts.

Corollary 6.4.11 Transpose Matrix

The transpose of an invertible matrix is invertible.

The proof involves identifying that the all the columns are linearly independent, so the rank of the matrix
is n. But because the matrix is square, it must mean all the rows are also linearly independent. The same
applies to the transpose, so the inverse is also invertible.

Corollary 6.4.12

Suppose A and B are square matrices such that BA is the identity matrix. Then A and B are inverses of
each other.

The Annihilator

There are two ways of representing a vector space:

1. as the span of a finite set vectors
2. as the solution set of a homogeneous linear system

The analogous representations of an affine space are

1. the affine hull of a finite set of vecotrs
2. the solution set of a linear system

Definition 6.5.7 Annihilator

For a subpace V of F n, the annihilator of V , written V o, is

V o = {uuu ∈ F n : uuu · vvv = 0 for every vector vvv ∈ V }

Theorem 6.5.13 Annihilator Dimension Theorem

If V and V o are subspaces of F n, then dimV + dimV o = n.

The proof involves using the Rank-Nullity Theorem rankA + NullityA = n, where it is then converted to
dimV + dimV o = n.

Theorem 6.5.15 Annihilator Theorem

(V o)o = V (The annihilator of the annihilator is the original space.)

7. Gaussian Elimination
Applications of Gaussian Elimination

1. Finding a basis for the span of given vectors. This additionally gives us an algorithm for rank and
therefore for testing linear dependence.

2. Finding a basis for the null space of a matrix.
3. Solving a matrix equation, which is the same as expressing a given vector as a linear combination of

other given vectors, which is the same as solving a system of linear equations.

Definition 7.1.1 Echelon Form

An m × n matrix A is in echelon form if it satisfies the following condition: for any row, if that row’s first
non-zero entry is in position k, then the first non-zero value in the previous rows must have been in a position
less than k.

The triangular matrix is a special case where the first non-zero entry in row i is in column i.

If a row of a matrix in echelon form is zero, then every subsequent row must be zero.

Lemma 7.1.2 Echelon Row Space

If a matrix is in echelon form, the non-zero rows form a basis for the row space.

It’s proved by using the Grow Algorithm starting from the bottom up. As you move up, each non-zero row
will have its first non-zero value in a column position that is smaller than the previous rows considered in the
grow algorithm. By inducation, this means that each row is linearly independent.
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Lemma 7.1.3 Row-Addition operations preserve the Row Space

For matrices A and N , Row NA ⊆ Row A.

The proof involves expressing vvv = ([uuuT ][N ])[A] and then recognizing that this merely represents a linear
combination of the rows of A.

Corollary 7.1.4

For matrices A and M , if M is invertible then Row MA = Row A.

Shortfalls of using Gaussian Elimination using Numerical Analysis

1. Partial pivoting selects rows with nonzero entries in column c, chooose row with entry having the largest
absolute value.

2. Complete pivoting selects a column on the fly to maximize the pivot element, instead of selecting the
order of the columns beforehand.

While partial pivoting is used in practice because it runs equickly and is easy to implement, it is error-prone.
Complete pivoting keeps those errors under control at the expense of speed.

Proposition 7.3.1

For any matrix A, there is an invertible matrix M such that MA is in echelon form.

Theorem 7.6.1 Prime Factorization Theorem

For every positive integer N, there is a unique bag of primes whose product is N.

Composite Factoring Optimization

If N is composite, it has a nontrivial divisor that is at most
√

N .

8. Inner Product
Distance, length, norm, inner product

• Property N1: For any vector vvv, ∥vvv∥ is a nonnegative real number
• Property N2: For any vector vvv, ∥vvv∥ is zero if and only if the vvv is a zero vector.
• Property N3: For any vector vvv and any scalar α, ∥αvvv∥ = |α|∥vvv∥.
• Property N4: For any vector vvv and uuu, ∥αvvv∥ = |α|∥vvv∥.

Inner Product Definition

One way to define the vector norm is to define an operation on vectors called the inner product: ⟨uuu,vvv⟩.

The norm of a vector is defined as
∥vvv∥ =

√
⟨vvv,vvv⟩

Inner Product Properties

1. Linearity in the First Argument: ⟨uuu + vvv,www⟩ = ⟨uuu,www⟩ + ⟨vvv,www⟩
2. Symmetry: ⟨uuu,vvv⟩ = ⟨vvv,uuu⟩
3. Homogeneity:⟨αuuu,vvv⟩ = α⟨uuu,vvv⟩

Theorem 8.3.1 Pythagorean Theorem for vectors over reals

If vectors uuu and vvv over the reals are orthogonal, then

∥uuu + vvv∥2 = ∥uuu∥2 + ∥vvv∥2

Orthogonality

Two vectors are orthogonal if their inner product is 0:

⟨uuu,vvv⟩ = 0

Orthongality Properties

1. Property O1: If uuu is orthogonal to vvv, then αuuu is orthogonal to αvvv for every scalar α.
2. Property O2: If uuu and vvv are both orthogonal to www, then uuu + vvv is orthogonal to www.

Lemma 8.3.3

If uuu is orthogonal to vvv, then for any scalars α, β,

∥αuuu + βvvv∥2 = α2∥uuu∥2 + β2∥vvv∥2
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Definition 8.3.6 Decomposition of a vector into components

For any vector bbb and vvv, define vector bbb∥vvv and bbb⊥vvv, respectively, the projection of bbb along vvv and the projection
of bbb orthogonal to vvv if

bbb = bbb∥vvv + bbb⊥vvv

and, for some scalar σ ∈ R,
bbb∥vvv = σvvv

and
bbb⊥vvv is orthogonal to vvv

Lemma 8.3.8 Fire Engine Lemma

Let bbb and vvv be vectors. The point in Span{vvv} closest to bbb is bbb∥vvv, and the distance is ∥bbb⊥vvv∥.

Lemma 8.3.11

For any vector bbb and vvv over the reals.

1. There is a scalar σ such that bbb − σvvv is orthogonal to vvv.
2. The point ppp on Span vvv that minimizes ∥b − p∥ is σvvv.
3. The value of σ is ⟨bbb,vvv⟩

⟨vvv,vvv⟩ .

9. Orthogonalization
Definition 9.1.1

A vector vvv is orthogonal to a set S of vectors if vvv is orthogonal to every vector in S.

Lemma 9.1.3

A vector vvv is orthogonal to each of the vectors aaa1, ..., aaan if and only if it is orthogonal to every vector in Span
aaa1, ..., aaan.

The proof involves expressing w, which is in the Span of the aaa vectors, with its coeffiecients and then
computing the inner product with v, the vector orthogonal to every vector in the Span. Because the inner
products with the vectors without the coefficient are zero, the coefficients of the Span multiplied by zero is
still zero.

Definition 9.1.4

For a vector bbb and a vector space VVV , we define the projection of bbb onto VVV and the projection of bbb orthogonal
to VVV so that bbb∥V is in VVV , and bbb⊥V is orthogonal to every vector in VVV .

bbb = bbb∥V + bbb⊥V

Lemma 9.1.6 Generalized Fire Engine Lemma

Let VVV be a vector space, and let bbb be a vector. The point in VVV closest to bbb is bbb∥VVV , and the distance is ∥bbb⊥VVV ∥.

Proposition 9.5.1

Mutually orthogonal nonzero vectors are linearly independent

The proof involves using the orthogonal vectors with coefficens and setting the linear combination to be zero.
By taking, for example, the inner product of v1∗ with the linear combination, only v1∗ is remaining and
must be zero because of the other side of the equation. You proved that the first coefficient is zero. It’s fully
proved by iterating through all the orthogonal vectors.

Definition 9.6.1

Let W be a vector space over the reals, and let U be a subspace of W. The orthogonal complement of U with
respect W is defined to be the set V such that

V = {w ∈ W : wisorthogonaltoeveryvecotrinU}

Furthermore, V is a subspace of W(Lemma 9.6.2).

Lemma 9.6.4

Let V be the orthogonal complement of U with respect to W. The only vector in U ∩ V is the zero vector.

Lemma 9.6.5

If the orthogonal complement of U with respect to W is V then

U ⊕ V = W
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QR Factorization

Matrix factorizations play a * mathematical role of offering insight into the nature of matrices – each
factorization gives us a new way to think about a matrix * compoutational role by allowing us to compute
solutions to fundamental computational problems

For example, an orthogonal marix with a coefficient matrix(Equation 9.7) be used to solve this square matrix
equation and also applicable to the least-square problem. Equation 9.7 defines a matrix whose columns are
mutually orthogonal and another triangular matrix that when multiplied provide the original matrix.

Definition 9.7.1

Mutually orthogonal vectors are said to be orthonormal if they all have a norm 1. A matrix is said to be
column-orthogonal if its column vectors are orthonormal. A square column-orthogonal matrix is said to be an
orthogonal matrix.

Lemma 9.7.2

If Q is a column-orthogonal matrix, then QT Q is an identity matrix.

Lemma 9.7.3 Inverse of Orthogonal Matrix

If Q is an orthogonal matrix, then its inverse is QT .

Definition 9.7.4 QR factorization of a matrix

The QR factorization of an m×n matrix A (where m ≥ n) is A = QR where Q is an m×n column-orthogonal
matrix Q and R is a triangular matrix:

[A] = [Q][R]

Lemma 9.7.5

In the QR factorization of A, if A’s columns are linearly independent then ColQ = ColA.

Lemma 9.8.1

Suppose A is a square matrix with linearly independent columns. The vector x̂ found by the above algorithm,
namely QR Square, satisfies the equation Ax = b.

Lemma 9.8.3

Let Q be a column-orthogonal basis, and let V = ColQ. Then, for any vector bbb whose domain equals Q’s
row-label set, QTbbb is the coordinate representation of b∥Vb∥Vb∥V in terms of the columns of Q, and QQTbbb is b∥Vb∥Vb∥V

itself.

Lemma 9.8.3

Let Q be a column-orthogonal basis, and let V = ColQ. Then, for any vector bbb whose domain equals Q’s
row-label set, QTbbb is the coordinate representation of b∥Vb∥Vb∥V in terms of the columns of Q, and QQTbbb is b∥Vb∥Vb∥V

itself.

10. Special Bases
Lemma 10.2.2

Let Q be a column-orthogonal matrix. Multiplication of vectors by Q preserves inner-products. In the context
of orthonormal bases, this implies they preserve norm.

⟨Quuu, Qvvv⟩ = ⟨uuu,vvv⟩

Corollary 10.2.3

For any column-orthogonal matrix Q and vector uuu, ||Quuu|| = ||uuu||. Let b and b be two vectors, and let x and
x be the represetations of b and b with respect to an orthonormal basis. Since Qx = b and Qx = b, the
corrolary implies that ||b − b|| = ||x − x||. This implies that finding a vector close to b is equivalent to finding
a representation close to x.

11. Singular Value Decomposition
Lemma 11.1.1 Frobenius Norm

The square of the Frobenius norm of A equals the sum of the squares of the rows of A.

||A||F =
√

ΣiΣjA[i, j]2
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Definition 11.2.2

We refer to σ1 as the first singular value of matrix A, and we refer to v1 as the first right singular vector.

Theorem 11.2.4

The minimum sum of the squared distances is ||A||2F − σ2
1 with a with a rank-one approximation.

Definition 11.2.10

The first left singular vector of matrix A is defined to be the vector u1 such that σ1u1u1u1 = Av1v1v1, where σ1 and
v1 are, respectively, the first singular value and the first right singular vector.

Theorem 11.2.11

The best rank-one approximation to A is σ1u1v1u1v1u1v1
T where σ1 is the first singular value, uuu1 is the first left

singular vector, and v1v1v1 is the first right singular vector.

Definition 11.3.2

The vectors vvv1, vvv2, ..., vvvr are the right singular vectors of matrix A, and the corresponding real numbers are
σ1, σ2, ..., σr are the singular values of matrix A.

Proposition 11.3.3

The right singular vectors are orthonormal. This is because we only pick vectors that are orthonormal to
previously selected vectors.

Proposition 11.3.5

The singular values are nonnegative and in descending order.

Lemma 11.3.6

Every row of matrix A is in the span of the right singular vectors.

Definition 11.3.7

The vectors u1, u2, ..., ur such that σjuj = Avj are the left singular vectors of matrix A.

Proposition 11.3.8

The left singular vectors are orthonormal.

Definition 11.3.9

The (reduced) form of singular value decomposition of a matrix A is a factorization of A as A = UΣV T in
which the matrices U , Σ, and V have three properties:

1. Σ is a diagonal matrix whose entries σ1, ..., σr are positive and in descending(non-negative) order.
2. V is a column-orthogonal matrix.
3. U is a column-orthogonal matrix.

Theorem 11.3.10

Every matrix A over R has a singular value decomposition.

Symmetry

The SVD is symmetric under transposition:

AT = (UΣV T )T

= V ΣT UT

= V ΣUT

Lemma 11.3.11

Let v1, ..., vk be an orthonormal vector basis for a vector space V . Then

||A||2F − ||Av1||2 − ... − ||Avk||2.

This can be interpreted as computing the distance from a row vector of matrix A to the corresponding vector
k in the right singular vectors.
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Theorem 11.3.12

Let A be an m × n matrix, and let a1, ..., am be its rows. Let v1, ..., vr be its right singular vectors, and let
σ1, ..., σr be its singular values. For any positive integer k ≤ r, Span{v1, ..., vk} is the k-dimensional vector
space V that minimizes the distance between the rows of A to the vector space spanned by the right singular
vectors. The minimum sum of squared distances is ||A||2F − σ2

1 − σ2
2 − ... − σ2

k.

Theorem 11.3.13

For k ≤ rank A, the best rank-at-most-k approximation to A is

Ã = σ1uuu1vvvT
1 + ... + uuukvvvT

k

for which ||A − Ã||2F = ||A||2F − σ2
1 − σ2

2 − ...σ2
k.

Proposition 11.3.14

In the singular value decomposition UΣV T of A, Col U = Col A and Row V T = Row A.
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